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A General model with detailed derivations

We add three features relative to the model presented in the main text: (i) for each market m there

is a density !m � 0 of traders, (ii) the asset supply is Sm � 0, not normalized to 1, and (iii) there

are bonds in positive net supply held in the family portfolio. The total measure of traders is one:

Z 1

0
!m dm = 1. (1)

The average segmentation parameters is then taken to be �̄ :=
R 1
0 �m!m dm. Each period one share

of the asset produces a stochastic realization of a non-storable dividend ym,t > 0. The aggregate

endowment available to the entire economy is:

yt =

Z 1

0
ym,tSm!m dm. (2)

As in the text, traders in market m are assumed to bear an exogenous fraction �m 2 [0, 1] of the

expense of purchasing assets in that market and in return receive �m of the benefit. The remaining

1� �m of the expenses and the benefits is borne by the family. As show in the text, this results in

a sequential budget constraint of the form:

cm,t + �mpm,tsm,t + (1� �m)pFt,t  �m(pm,t + ym,t)sm,t�1 + (1� �m)
�
p

F
t�1,t + yt

�
� ⌧m,t, (3)

where the new term, ⌧m,t, is a lump-sum tax levied on market m by the government. As in the

main text p

F
t�1,t + yt and p

F
t,t represent the cum-dividend value of the family portfolio brought

into the period and the ex-dividend value of the family portfolio acquired this period, respectively.

Proceeding as in the text, we find that pFt,t and p

F
t�1,t satisfy:

(1� �̄)
�
p

F
t�1,t + yt

�
=

Z 1

0
(1� �n)(pn,t + yn,t)sn,t�1!n dn+ b1,t�1 +

X

k�1

⇡k,tbk+1,t�1

(1� �̄)pFt,t =

Z 1

0
(1� �n)pn,tsn,t!n dn+

X

k�1

⇡k,tbk,t,

where ⇡k,t and bk,t denote the price and quantity of purchases of zero-coupon bonds that pay the

family one (real) dollar for sure in k periods’ time.

2



Government. The government collects lump-sum taxes from each market and issues zero-coupon

bonds of various maturities subject to the period budget constraint:

B1,t�1 +
X

k�1

⇡k,tBk+1,t�1 
X

k�1

⇡kBk,t +

Z 1

0
⌧m,t!m dm, (4)

where Bk,t denotes the government’s issue of k-period bonds at time t. We choose a particular

specification of lump-sum taxes that has the property of not redistributing resources across markets:

⌧m,t =
1� �m

1� �̄

0

@
B1,t�1 +

X

k�1

⇡k,t [Bk+1,t�1 �Bk,t]

1

A
. (5)

Equilibrium allocations. Market clearing requires sm,t = Sm for each m and bk,t = Bk,t for each

k. We plug these conditions in the market-specific budget constraints and then use the government

budget constraint combined with the expressions (5) for lump-sum taxes. After cancelling common

terms we get:

cm,t = �mym,tSm + (1� �m)

Z 1

0

1� �n

1� �̄

yn,tSn!n dn.

First-order conditions and asset pricing. Let µm,t � 0 denote the multiplier on the budget

constraint for market m and use the market-specific budget constraints and accounting identities

for the family portfolio to write the Lagrangian:

L = E0

 1X

t=0

�

t
Z 1

0

⇢
u(cm,t) + µm,tBm,t

�
!m dm

�

where

Bm,t =�m(pm,t + ym,t)sm,t�1

+
1� �m

1� �̄

0

@
Z 1

0
(1� �n)(pn,t + yn,t)sn,t�1!n dn+ b1,t�1 +

X

k�1

⇡k,tbk+1,t�1

1

A

�

2

4
cm,t + �mpm,tsm,t +

1� �m

1� �̄

0

@
Z 1

0
(1� �n)pn,tsn,t!n dn+

X

k�1

⇡k,tbk,t

1

A+ ⌧m,t

3

5
.
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Now collecting terms in
R 1
0 µm,tBm,t!m dm and rearranging:

Z 1

0
µm,tBm,t!m dm

=

Z 1

0
µm,t

⇢
�m(pm,t + ym,t)sm,t�1 � cm,t � �mpm,tsm,t � ⌧m,t

�
!m dm

+

Z 1

0
µm,t

1� �m

1� �̄

⇢
b1,t +

X

k�1

⇡k,t(bk+1,t�1 � bk,t)

�
!m dm

+

Z 1

0
µm,t

1� �m

1� �̄

Z 1

0
(1� �n)


(pn,t + yn,t)sn,t�1 � pn,tsn,t

�
!n!m dn dm.

Now, in the last term, we permute the roles of the symbols m and n and then interchange the order

of integration:

Z 1

0
µn,t

1� �n

1� �̄

Z 1

0
(1� �m)[(pm,t + ym,t)sm,t�1 � pm,tsm,t]!m!n dmdn

=

Z 1

0
µn,t

1� �n

1� �̄

!n dn

� Z 1

0
(1� �m)[(pm,t + ym,t)sm,t�1 � pm,tsm,t]!m dm.

Next, define the weighted average of Lagrange multipliers:

qm,t := �mµm,t + (1� �m)qt, and qt :=

Z 1

0

1� �n

1� �̄

µn,t!n dn,

as in the main text. Substituting for qm,t and qt we get:

L = E0

 1X

t=0

�

t
Z 1

0

⇢
u(cm,t) + qm,t(pm,t + ym,t)sm,t�1 � qm,tpm,tsm,t

� µm,t(cm,t + ⌧m,t) + qt

✓
b1,t�1 +

X

k�1

⇡k,t(bk+1,t�1 � bk,t)

◆�
!m dm

�
.

Apart from the term reflecting the presence of bonds, this is the same Langrangian as in the main

text. We take derivatives (point-wise) to obtain the first order necessary conditions reported in the

main text.

Portfolio weights and returns. To streamline the exposition we return to the model used in

the main text. The total value of the family portfolio is:

Z 1

0

1� �m

1� �̄

pm,tsm,t dm.
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Thus, in the family portfolio, asset m is represented with a weight:

 m,t :=
1��m

1��̄
pm,tsm,t

R 1
0

1��n

1��̄
pn,tsn,t dn

.

Letting Rm,t+1 = (pm,t+1+ym,t+1)/pm,t be the return on asset m, the return on the family portfolio

can be written:

Rt+1 =

Z 1

0
Rm,t+1 m,t dm.

Now recall that trader m holds �mpm,tsm,t real dollars of asset m, and the rest of his investment:

(1� �m)

Z 1

0

1� �n

1� �̄

pn,tsn,t dn,

is in the family portfolio. Thus, the return of trader’s m portfolio can be written:

 m,tRm,t+1 + (1� m,t)Rt+1,

where:

 m,t :=
�mpm,tsm,t+1

�mpm,tsm,t + (1� �m)
R 1
0

1��n

1��̄
pn,tsn,t dn

,

is the portfolio weight in the local asset.
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B Computational details

Information. The aggregate state is a VAR for log consumption growth and log idiosyncratic

volatility:

log gt+1 = (1� ⇢) log ḡ + ⇢ log gt + "g,t+1

log �t+1 = (1� �) log �̄ + � log �t � ⌘ (log gt � log ḡ) + "v,t+1,

where 0  ⇢,� < 1 and where the two components of innovation, ✏g,t+1 and ✏v,t+1, are assumed to

be contemporaneously uncorrelated. The dividend in market m is:

log ym,t = log yt + log ŷm,t, (6)

where the log idiosyncratic component is conditionally IID normal in the cross section:

log ŷm,t ⇠ IID across m and N(��2mt/2,�
2
mt)

�mt = �t�̂m,

for some time-invariant market specific volatility level �̂m.

Setup. Let utility be CRRA with coe�cient � > 0 so u

0(c) = c

�� . Assume markets come in M

di↵erent types m 2 {1, . . . ,M}. Note that this is an abuse of notation given that we previously

used m to index a single market within the [0, 1] continuum. There is an equal measure of assets,

1/M , in each market type. The total measure of traders in a market of type m is denoted by !m.

Thus, we have the restriction:

MX

m=1

!m = 1.

The supply of asset per trader in a market of type m is Sm, so the total supply in that market is

Sm!m. The dividend is ym,t = ytŷm,t where E [ŷm,t | gt,�t] = 1. Since the aggregate endowment is

yt, we need to impose the restriction:

MX

m=1

Sm!m = 1.
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The segmentation parameter in a market of type m is �m and the supply per trader is Sm. In

equilibrium, consumption in a market of type m is given by:

cm,t = yt (Am +Bmŷm,t) ,

where

Am := (1� �m)
MX

n=1

1� �n

1� �̄

Sn!n,

and

Bm := �mSm.

We then have qm,t = ✓m,ty
��
t where:

✓m,t = �m (Am +Bmŷm,t)
�� + (1� �m)

MX

n=1

1� �n

1� �̄

E
⇥
(An +Bnŷn,t)

�� | gt,�t
⇤
!n,

where, by the LLN, the conditional expectation on the right–hand side calculates the cross-sectional

average of (An + Bnŷn,t)�� within type n markets. We explain below how to compute this expec-

tation. Now let p̂m,t := pm,t/yt be the price/dividend ratio in a type m market. This solves:

p̂m,t = Et


�g

1��
t+1

✓m,t+1

✓m,t
(p̂m,t+1 + ŷm,t+1)

�
. (7)

B.1 Approximation

Each market is characterized by 3 states: two aggregate states (g,�) and one idiosyncratic state ŷm

(to simplify notation, we omit the ‘log’). Given the specification above, the transition density is of

the form:

f(g0,�0, ŷ0 | g,�, ŷ) = f(g0,�0 | g,�)f(ŷ0 |�0).

Our approximation follows Tauchen and Hussey (1991). First, we pick quadrature nodes and weights

for the aggregate state: consumption growth, Qg and Wg (column vectors of size Ng) and volatility,

Q� and W� (column vectors of size N�).

In their original paper, Tauchen and Hussey recommended to pick these nodes and weights ac-

cording to the transition density evaluated at the mean, i.e., a bivariate Gaussian density f(g0,�0 | ḡ, �̄)
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which in the present case is the product of two independent normal densities with means log ḡ, log �̄,

respectively, and variances �2g and �

2
v . Subsequent work has highlighted, however, that when the

Markov chain being approximated is highly persistent, the quality of the approximation may be

poor. In our calibration exercise, this problem may arises when the moment matching algorithm

searches in the region where the volatility process, �, is highly persistent (� close to 1). To alleviate

this concern we follow Flodèn (2008): we generate nodes and weights for � based on a “twisted”

Gaussian density with a higher standard deviation:

� = w�v + (1� w)
�vp
1� �

2
where w = 1/2 + �/4. (8)

We also use a larger number of nodes to better capture the impact of high realization of �. Below,

we provide further discussion of the robustness of the approximation.

Next, for every quadrature value of �, we generate quadrature nodes and weights in each market

type m for the log idiosyncratic state log ŷ, according to a Gaussian density with mean ��̂2m�2/2

and variance �̂2m�
2. The resulting nodes and weights column vectors have length N� ⇥Nŷ and we

denote them by Q

m
ŷ |� and W

m
ŷ |�. In these vectors of nodes and weights, we adopt the convention

that “idiosyncratic endowment comes first:” that is, in the quadrature node vector, idiosyncratic

endowment i under volatility j is found in entry i+Nŷ(j � 1).

Now, if we combine idiosyncratic endowment, aggregate volatility, and aggregate endowment

growth together we obtain, for each market type m, a finite state space that we index by n 2

{1, 2, 3, . . . N}, where

N ⌘ Nŷ ⇥N� ⇥Ng.

We adopt the convention the state of idiosyncratic endowment i 2 {1, . . . , Nŷ}, volatility j 2

{1, . . . , N�}, and aggregate consumption growth k 2 {1, . . . , Ng} correspond to state:

n = i+Nŷ(j � 1) +NŷN�(k � 1).

In each state, the value of idiosyncratic endowment, aggregate volatility, and aggregate consumption

growth can be conveniently represented with Kronecker products of the quadrature nodes:

Vg = Qg ⌦ eN� ⌦ eNy

V� = eNg ⌦Q� ⌦ eNy

V

m
ŷ = eNg ⌦Q

m
ŷ |�,

8



where eN denotes a N⇥1 vector of ones. By construction, entry n of vector Vg contains consumption

growth if the state of market m is n, and similarly for V� and V

m
ŷ . The corresponding quadrature

weights are obtained as follows. We let:

A = Wg ⌦ eN� ⌦ eNy

B = eNg ⌦W� ⌦ eNy

C

m = eNg ⌦W

m
ŷ |�,

so that the quadrature weights for the state are:

W

m = A. ⇤B. ⇤ Cm

where .⇤ denotes Matlab coordinate-per-coordinate product.

Transition probability matrix. To implement the method of Tauchen and Hussey (1991), we

define a Matlab function:

f

m(s0 | s) = f

m(ŷ0 |�0)⇥ f(�0 |�, g)⇥ f(g0 | g),

as well as the quadrature weighting function:

!

m(s) = !

m(ŷ |�)⇥ !(�)⇥ !(g),

which is the probability density function used above to generate the quadrature nodes and weights

for market m. Letting , the matrix formula for the transition matrix is:

G = f

m(eN V

0
ŷ | eN V

0
�). ⇤ f(eN V

0
� |V� e

0
N , Vg e

0
N ). ⇤ f(eN V

0
g |Vg e

0
N )

. ⇤ (eN ⇤W 0)./
⇥
eN . ⇤ !(V 0

ŷ |V 0
�). ⇤ !(V 0

�). ⇤ !(V 0
g)
⇤
,

which we then normalize so that the rows sum to 1.

Calculating cross-sectional moments. In many instance in the program we need to calculate

E [xm | g,�] ,

for some random variable xm. To do this, we consider:

K� = (INg⇥N� ⌦ e

0
Nŷ

) [xm. ⇤Wm] ,
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where

W

m = eNg ⌦W

m
ŷ |�.

The coordinate-wise product multiplies each realization of xm by its probability conditional on

(g,�), and the pre-multiplication adds up. We then re-Kroneckerize this in order to obtain a N ⇥ 1

vector:

K� ⌦ eNŷ .

B.2 Robustness of the approximation

Table II shows that our numerical results are robust to alternative parameterizations of the numeri-

cal approximations. We consider three versions of the single � economy: the benchmark version, the

version with constant �, and the feedback version with countercyclical �t. In our default standard

parameterization we have N = Ng ⇥N� ⇥Nŷ = 3⇥ 9⇥ 19 = 513 quadrature nodes and weights. It

also uses the “twisted” density recommended by Flodèn (2008) to alleviate concerns about the ac-

curacy of the Tauchen and Hussey (1991) procedure when the �t process is persistent (see equation

(8) above). In our high precision parameterization we have N = Ng⇥N�⇥Nŷ = 5⇥19⇥25 = 2, 375

nodes and weights and again use the twisting recommended by Flodèn. In the no twist parameteri-

zation we use the plain Tauchen and Hussey (1991) procedure and the same configuration of nodes

as in the standard parameterization. The issue of twisting does not arise in the constant � model.

For each of these numerical approximations the table reports the calibrated parameter values,

the values of the moments we target, and the implications for aggregate asset prices.

For a given model, we see that increasing the number of nodes from the standard to high

parameterization has negligible e↵ect on the results. Similarly, the twisting recommended by Flodèn

has negligible e↵ect. This suggests that our calibrated stochastic process is not persistent enough

to cause any problems for the plain Tauchen and Hussey procedure.
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C Incomplete markets counterpart

In this Appendix we consider an incomplete markets counterpart of our model. In contrast with

the segmented markets model, we assume that traders are only restricted in their local trades,

i.e., traders in market m 2 [0, 1] have to hold at least � shares of their local assets. As shown in

detail below, we solve for an equilibrium in two steps. First, we consider an alternate model where

traders faces tighter constraints and are restricted to a smaller set of securities. Namely, we start by

assuming that trader m 2 [0, 1] is forced to hold exactly � shares of asset m, and can only trade a

claim to aggregate consumption, that is, a well diversified portfolio of assets n 6= m. This becomes a

simple Bewley model whose equilibrium can be characterized using results from Krueger and Lustig

(2010). Second, we show that the prices and allocations in this alternate model are the basis of an

equilibrium in the original incomplete markets model. Specifically:

• the ex-dividend price of any local asset is the same as the price of a claim to aggregate

consumption,

• trader m 2 [0, 1] always finds it optimal to hold a well diversified portfolio of assets n 6= m,

and

• the portfolio constraint of trader m 2 [0, 1] is binding. That is, if we allow a trader to hold

more than � shares, her optimal holding remains equal to �.

The intuition for these results is the following. Given that all traders n 6= m can trade asset

m without portfolio constraints, their marginal rate of substitution (MRS) must price asset m.

Moreover, the MRS of traders n 6= m only depends on the history of dividends in market n 6= m,

not on the history of dividends in market m. Therefore, from the point of view of traders n 6= m,

the dividend risk in market m is idiosyncratic. It follows that the price of asset m must be the same

as the price of a claim to aggregate consumption. Given that all assets have the same ex-dividend

price, trader m wants to hold a well diversified equally-weighted portfolio of assets n 6= m and wants

to hold as little of asset m as possible, i.e., exactly � shares.

C.1 Alternate model

We assume that the aggregate endowment, yt, follows a geometric random walk:

yt = gtyt�1
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where y0 is given and where gt is IID with finite support G. We also assume that there is a continuum

m 2 [0, 1] of assets with dividends ŷm,tyt, where ŷm,t is IID across time and assets, has finite support

Y, and is independent from the endowment growth process. The mean of ŷm,t is normalized to one.

There is a continuum of traders, also indexed by m 2 [0, 1].

We consider a version of the incomplete markets model of Krueger and Lustig (2010): we assume

that a trader of type m 2 [0, 1] is forced to hold � shares of asset m but can self-insure by trading

claims to the aggregate endowment.1

The initial distribution of aggregate consumption claim holdings is �0(�), with
R
�d�0(�) =

1 � �. Now consider an individual trader who starts with initial holding �0. At time t � 1 after

history s

t
m = (ŷtm, g

t) := (ŷm,1, . . . , ŷm,t, g1, . . . , gt), the trader chooses consumption ct(�0, stm) and

asset holdings �t(�0, stm), subject to the sequential budget constraint:

ct(�0, s
t
m) + �t(�0, s

t
m)pt(g

t)  �ŷm,tyt + �t�1(�0, s
t�1
m )[yt + pt(g

t)], (9)

where pt(gt) is the price of a consumption claim after aggregate history g

t. On the right-hand side

of the budget constraint, �ŷm,tyt represents the dividend paid out by the � shares of asset m that

the trader is forced to hold. We also assume that the trader faces short-selling limits of the sort

considered in Krueger and Lustig:

�t(�0, s
t
m)pt(g

t) � �Ktyt. (10)

Intertemporal utility is

1X

t=1

X

stm

�

t
⇡t(s

t
m)

ct(�0, stm)1��

1� �

, (11)

where ⇡t(stm) denotes the probability of history s

t
m. An equilibrium consists of asset prices {pt(gt)}

and policy functions {ct(�0, stm)} and {�t(�0, stm)} such that the policy functions maximize each

1Krueger and Lustig (2010) also consider richer market structures, with Arrow securities paying o↵ conditional on
the realized aggregate state, and one-period riskless bonds. However, they show that there are equilibria in which
there is no trade in these other markets. That is, in order to self-insure against idiosyncratic shocks, agents find it
optimal to trade only aggregate endowment claims.
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trader’s problem given prices, and markets clear at for all t and g

t:

Z X

ŷtm

⇡t(ŷ
t
m)ct(�0, ŷ

t
m, g

t)d�(�0) = yt,

Z X

ŷtm

⇡t(ŷ
t
m)�t(�0, ŷ

t
m, g

t)d�(�0) = 1� �.

A rescaled economy. To solve for an equilibrium, Krueger and Lustig (2010) start with the

following change of variables:

ĉt(�0, s
t
m) :=

ct(�0, stm)

yt
, �̂t(�0, s

t
m) := �t(�0, s

t
m), and p̂t(g

t) :=
pt(gt)

yt
.

With this new notation, a trader’s intertemporal utility can be written:

y

1��
0

1X

t=1

�̂

t
X

stm

⇡̂t(s
t
m)

ĉt(�0, stm)1��

1� �

,

where �̂ := �

X

g2G
⇡(g)g1��

, and ⇡̂t(s
t
m) := ⇡t(ŷ

t
m)

tY

s=1

⇡(gs)g
1��
sP

g2G ⇡(g)g
1��

.

Similarly, the sequential budget constraints and the short-selling constraints now become:

ĉt(�0, s
t
m) + �̂t(�0, s

t
m)p̂t(g

t)  �ŷm,t + �̂t�1(�0, s
t�1
m )[1 + p̂t(g

t)]

�̂t(�0, s
t
m)p̂t(g

t) � �Kt,

with market clearing conditions:

Z X

ytm

⇡t(ŷ
t
m)ĉt(�0, s

t
m)d�(�0) = 1

Z X

ytm

⇡t(ŷ
t
m)�̂t(�0, s

t
m)d�(�0) = 1� �.

An equilibrium of the rescaled economy is defined exactly as before.

As is clear from these equations, after the change of variables, the history of aggregate endow-

ment growth g

t no longer a↵ects the fundamentals of the rescaled economy. Indeed, yt does not

a↵ect the right–hand side of the rescaled market clearing conditions, and the only way it a↵ects the

agent’s budget constraints is through its potential impact on the rescaled asset price, p̂t(gt). It is

therefore natural to look for an equilibrium in which the rescaled asset price is, in fact, a determin-

istic function of time, i.e. p̂t(gt) = p̂t, and in which rescaled consumption and asset holdings are
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only functions of time and of the history of idiosyncratic shocks, ŷtm, i.e., ĉt(�0, stm) = ĉt(�0, ŷtm),

and �t(�0, stm) = �t(�0, ŷtm). In this case, the asset becomes a risk-free bond and an equilibrium can

be computed using standard methods for Bewley models (Ljungqvist and Sargent, 2004, Chapter

17, for example).

After solving for an equilibrium of the rescaled economy, an equilibrium of the incomplete

markets model is found by scaling back the price, consumption, and asset holdings:

pt(g
t) = ytp̂t, ct(�0, ŷ

t
m, g

t) = ytĉt(�0, ŷ
t
m), and �t(�0, ŷ

t
m, g

t) = �̂t(�0, ŷ
t
m).

C.2 Back to the original incomplete markets model

With this result in mind, we provide an equilibrium in the original incomplete markets model, i.e.,

where each trader m 2 [0, 1] can trade claims in all assets but is restricted to hold at least � shares

of their local asset. The trader faces the short-selling restriction that the total value of her portfolio

has to be greater than �Ktyt+�pm,t, where pm,t is the price of the local asset. We guess and verify

that there exists an equilibrium in which:

• all local assets have the same price pm,t = pt(gt) = p̂tyt,

• the trader’s consumption is the same as in the alternative incomplete market model,

• trader m holds � shares of asset m and �̂t(ŷtm) shares of a claim to the aggregate endowment.

The trader synthesizes this claim by holding an equally weighted portfolio of assets n 6= m.

The asset market clears by construction. Also by construction, the sequential budget constraints

and the short-selling restrictions hold. So, all we need to verify is that the consumption and asset

holdings are individually optimal.

Optimality of holdings of asset n 6= m. Given concavity, the first-order conditions are neces-

sary and su�cient. The first-order condition for the holdings of asset n 6= m is:

p̂tyt = �

X

sm,t+1,ŷn,t+1

⇡(gt+1)⇡(ŷm,t+1)⇡(ŷn,t+1)

✓
yt+1ĉt+1(�0, ŷt+1

m )

ytĉt(�0, ŷtm)

◆��

[yt+1ŷn,t+1 + p̂t+1yt+1] + ⌫m,t,

with ⌫m,t � 0, and ⌫m,t = 0 if the short-selling restriction is slack. Note that, in this first–order

condition, we used the fact that, in our candidate equilibrium, re-scaled consumption does not

depend on the history of aggregate shocks. Dividing both sides by yt > 0, and keeping in mind that

14



yt+1/yt = gt+1, we can rewrite this condition as:

p̂t = �̂

X

gm,t+1,ŷm,t+1,ŷn,t+1

⇡̂(gt+1)⇡(ŷm,t+1)⇡(ŷn,t+1)

✓
ĉt+1(�0, ŷt+1

m )

ĉt(�0, ŷtm)

◆��

[ŷn,t+1 + p̂t+1] +
⌫m,t

yt

= �̂

X

gt+1

⇡̂(gt+1)
X

ŷm,t+1

⇡(ŷm,t+1)

✓
ĉt+1(�0, ŷt+1

m )

ĉt(�0, ŷtm)

◆��
2

4
X

ŷn,t+1

⇡(ŷn,t+1)ŷn,t+1 + p̂t+1

3

5+
⌫m,t

yt

= �̂

X

ŷn,t+1

⇡(ŷm,t+1)

✓
ĉt+1(�0, ŷt+1

m )

ĉt(�0, ŷtm)

◆��

[1 + p̂t+1] +
⌫m,t

yt
(12)

where we use that ŷm,t+1 and ŷn,t+1 are independent, that
P

gt+1
⇡̂(gt+1) = 1, and finally that

P
ŷn,t+1

⇡(ŷn,t+1)ŷn,t+1 = 1. This condition is the same as the one for the aggregate consumption

claim in the alternative incomplete markets model. It thus holds by construction. The key intuition

is that, for agent m, the endowment risk of asset n 6= m is idiosyncratic. Therefore, this agent

values a claim to asset n 6= m exactly the same way as a claim to aggregate endowment.

Optimality of holding of asset m. For agent m 2 [0, 1], the first-order condition for the holding

of asset m is:

p̂tyt �
X

gt+1,ŷm,t+1

�⇡(gt+1)⇡(ŷm,t+1)

✓
yt+1ĉt+1(ŷt+1

m )

ytĉt(ŷtm)

◆��

[yt+1ŷm,t+1 + p̂t+1yt+1] + ⌫m,t.

where ⌫m,t is defined as above. We need to verify an inequality because of the restriction that agent

m has to hold at least � shares of asset m, and because of our guess that the agent holds exactly �

shares. Proceeding as above we can rewrite this condition as:

p̂t �
X

ŷm,t+1

�̂⇡(ŷm,t+1)

✓
ĉt+1(�0, ŷt+1

m )

ĉt(�0, ŷtm)

◆��

[ŷm,t+1 + p̂t+1] +
⌫m,t

yt
.

Substituting (12) on the left-hand side of this inequality, this condition becomes:

X

ŷm,t+1

⇡(ŷm,t+1)

✓
ĉt+1(�0, ŷt+1

m )

ĉt(�0, ŷtm)

◆��

[ŷm,t+1 � 1]  0

, Covt

✓
ĉt+1

�
�0, ŷ

t+1
m

�◆��

, ŷm,t+1

�
 0.

That is, the agent finds it optimal to hold exactly � shares of the asset if the asset payo↵ is negatively

correlated with their marginal utility of consumption. This happens if, conditional on history ŷ

t
m,

consumption next period is an increasing function of the local endowment realization, ŷm,t+1. But

15



this follows from a known property of Bewley models: consumption is an increasing function of

“cash-at-hand”. In terms of our notation, this property can be expressed as follows:

Proposition. Suppose that, for all �0 and ŷ

t
m, ĉt(�0, ŷtm) > 0. Then ĉt(�0, ŷtm) is an increasing

function of ŷm,t.

Proof. Let

Rt :=
1 + p̂t+1

pt

and consider the income fluctuation problem associated with the incomplete markets model. That

is, for each t � 1, consider:

vt(a) = sup
1X

j=0

X

ŷt+j
m ⌫ŷtm

�̂

j
⇡(ŷt+j

m | ŷtm)
ct+j(ŷ

t+j
m )1��

1� �

,

subject to

ct+j(ŷ
j
m) +

bt+j(ŷm
t+j)

Rt+j
 at+j(ŷ

t+j
m )

at+j+1(ŷ
t+j+1
m ) = �ŷm,t+j+1 + bt+j(ŷ

t+j
m )

bt+j(ŷ
t+j
m )

Rt+j
� Kt+j

ct+j(ŷ
j
m) � 0

at = a.

Given that the idiosyncratic dividends are IID over time, the optimization problem and therefore

the value function only depend on time, not on the history ŷ

t
m of idiosyncratic shocks up to time

t. Because the objective is concave and the constraint set convex, it follows that the value function

vt(a) is concave. Moreover, following the proof of Theorem 4.2 in Stokey and Lucas (1989) we find

that the value function solves the Bellman equation:

vt(a) = sup
c�0

8
<

:
c

1��

1� �

+ �̂

X

ŷ0m

⇡(ŷ0m)vt+1

✓
�ŷ

0
m +Rt [a� c]

◆9=

; ,
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subject to a� c � Kt. In particular, this implies that consumption ct(a) := ĉ(�0, ŷtm) > 0 solves the

Bellman equation at time t given cash-at-hand:

a = �ŷm,t + �t�1
�
�0, ŷ

t�1
m

�
[1 + p̂t] .

We now show that the value function is di↵erentiable at a with v

0
t(a) = ct(a)�� . The proof is

standard. Given that ct(a) > 0, for ã close enough to a, the consumption c̃ = ct(a) + ã � a is

feasible given cash-at-hand ã (it is positive and satisfies the borrowing constraint by construction).

Plugging this back into the Bellman equation we obtain:

vt(ã) �
(ct(a) + ã� a)1��

1� �

+ �̂

X

ŷ0m

⇡(ŷ0m)vt+1

✓
�ŷ

0
m +Rt [a� ct(a)]

◆

=
(ct(a) + ã� a)1��

1� �

+ vt(a)�
ct(a)1��

1� �

.

Rearranging gives:

vt(ã)� vt(a) �
(ct(a) + ã� a)1��

1� �

� ct(a)1��

1� �

.

Now consider ã > a, divide both sides by ã � a > 0, and let ã ! a

+. Given that the function

vt(a) is concave, it has left- and right-hand side derivatives everywhere. Therefore, as ã ! a

+, the

left-hand side of the above equation converges to the right derivative of the value function at a, so

that we obtain:

v

0
t(a

+) � ct(a)
��

.

Now do the same for ã < a and obtain:

v

0
t(a

�)  ct(a)
��

.

Concavity also implies that v0t(a
�) � v

0
t(a

+). Taken together, we find that vt(a) is di↵erentiable at

a and that v0t(a) = ct(a)�� . Using the notation of the sequence problem, this can be written:

ct(�0, y
t
m) =


v

0
t

✓
�ŷm,t + �t�1

�
�0, ŷ

t�1
m

�
[1 + p̂t]

◆�� 1
�

.

By concavity, the directional derivative of vt(a) is a decreasing functions of cash-at-hand. Together

with the above, this implies that consumption is an increasing function of the current dividend

realization, ŷm,t. ⇤
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C.3 Di↵erent asset pricing implications

Another important di↵erence between incomplete and segmented markets concerns the relationship

between idiosyncratic income risk and the equity premium. As emphasized by Mankiw (1986),

Constantinides and Du�e (1996) and Krueger and Lustig (2010), with CRRA utility and idiosyn-

cratic income risk that is independent of aggregate consumption growth, idiosyncratic risk has no

impact on the equity premium in the incomplete markets model.2 Indeed, as explained above, in

the incomplete markets version of our model, the MRS of every trader m prices the excess returns

in market n 6= m. In particular, it prices the excess return of the market portfolio:

E [MmR

e] = 0. (13)

Moreover, the MRS can be factored into M̂mM , where M = �g

�� is the Lucas-Breeden stochastic

discount factor, and M̂m is an idiosyncratic component that is independent from M . Expanding

the expectation in (13) we have:

E[M̂mMR

e] = E[M̂m]E[MR

e] + Cov[M̂m,MR

e] = 0.

From independence Cov[M̂m,MR

e] = 0. Using this and dividing by E[M̂m] > 0 we obtain:

E [MR

e] = 0.

As shown by Kocherlakota (1996), this asset pricing equation cannot rationalize the observed equity

premium.

This irrelevance result does not hold in the segmented markets model. The reason is that in

our asset pricing model the local stochastic discount factor does not have to price the excess return

on the aggregate market portfolio, as in equation (13), but instead only has to price the excess

return on the local asset market. The local discount factor is correlated with the local excess return

(through the local endowment realization) and this makes it impossible to strip out the influence

of the market-specific factor.

Specifically, instead of equation (13) we have a pricing equation of the form:

E [MmR

e
m] = 0, (14)

2See Telmer (1993) and Heaton and Lucas (1996) for important early applications of incomplete markets models
to asset pricing.
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where Mm is the local stochastic discount factor and R

e
m is the local excess return. We can again

write the local discount factor Mm = M̂mM where M is the Lucas-Breeden discount factor and

M̂m is a market-specific factor. Now proceeding as above and expanding the expectation in (14) we

have:

E[M̂mMR

e
m] = E[M̂m]E[MR

e
m] + Cov[M̂m,MR

e
m] = 0.

But M̂m and R

e
m depend on the same local risk factor so Cov[M̂m,MR

e
m] 6= 0 and we cannot strip

out E[M̂m]. This makes it impossible to aggregate the collection of equations (14) into (13), and,

because of this, the standard incomplete markets logic does not apply in our model.
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D Conditional moments and return predictability

Conditional price/dividend ratio. Our model’s implications for time variation in asset returns

are largely summarized by the implications for the market price/dividend ratio. The left panel of

Figure I shows the annualized market price/dividend ratio as a function of the volatility state �t

holding the aggregate endowment growth constant at its mean and using our benchmark param-

eterization unless otherwise noted. In the frictionless version of the model, � = 0, the pt/yt ratio

is constant. For � > 0, the pt/yt ratio is monotonically declining. A high �t corresponds to high

average marginal utility qt and a low pt/yt and, in that sense, corresponds to a “bad” aggregate

state. A low �t corresponds to a low average marginal utility qt, a high pt/yt, and represents a

“good” aggregate state. For higher values of �, the price/dividend ratio is relatively lower in bad

states and higher in good states. In short, more segmentation tends to amplify fluctuations in pt/yt.

Conditional volatility of stock returns. The right panel of Figure I shows the annualized

conditional standard deviation of the market return. For � > 0 this is monotonically increasing

in the volatility state �t. An increase in �t represents an increase in the cross-sectional variation

in idiosyncratic endowments, yet this translates to an increase in the time series variation of the

aggregate market return. At high frequencies, the model produces ARCH-like e↵ects in aggregate

returns, the monthly autocorrelation coe�cient for the conditional standard deviation of returns

is 0.77. This would be undetectable in annual data (0.7712 = 0.04) but represents considerable

time-variation in conditional return volatility at higher frequencies (on the order of 0.771/30 = 0.99

daily, say). Again we see that more segmentation tends to amplify fluctuations, here the sensitivity

of the conditional standard deviation to �t is higher the higher is �.

Return predictability. The time-variation in the price/dividend ratio shown in Figure I implies

that aggregate market returns in our model are forecastable (given that aggregate endowment

growth is IID). To see this, we use our model to reproduce return predictability regressions of the

kind documented by Campbell and Shiller (1988) and Fama and French (1988). We run regressions

of annual returns and excess returns on the dividend/price ratio yt/pt and a constant. In the data,

at a one-year horizon this produces a coe�cient on yt/pt of about 3 (for returns) or 3.4 (for excess

returns). Thus, relatively low prices forecast high subsequent returns. In our model, we find the

coe�cient is about 15 for returns (Table III). Thus our model can reproduce the predictability of

returns. However, because in our model the risk-free rate is nearly as countercyclical as returns,

the model excess returns are nearly a-cyclical (in fact, the coe�cient is slightly negative).
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Another way to see the time-variation in returns is to observe that in the model the standard

deviation of expected returns is 6.7%, just over two-thirds the level of the average return. In the

data, the standard deviation of the fitted values of returns and excess returns are similarly volatile.

Since aggregate growth gt+1 is IID, the time-variation in asset returns in our model is introduced

through the multiplicative adjustment ✓t+1/✓t in the SDF that prices bonds and through the market-

specific adjustments ✓m,t+1/✓m,t in the SDFs that price stocks. We now document the properties

of these terms in more detail.
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E Multiplicative adjustment to SDFs

Aggregate bond-pricing factor. With CRRA preferences the aggregate state price qt can be

written as the product of the marginal utility of aggregate consumption y

��
t and a multiplicative

term ✓t that captures the segmentation e↵ect:

qt = ✓ty
��
t ,

where

✓t :=

Z 1

0

1� �m

1� �̄

[1 + �m(ŷm,t � 1)]��
dm. (15)

In other words, ✓t is the cross-sectional average marginal utility but reweighted to reflect the di↵erent

contributions of traders in di↵erent markets to the family portfolio. Observe that ✓t depends on

the cross-sectional distribution of endowments, as determined by the volatility factor �t, but does

not depend on any individual endowment realization. A high realization of �t increases the cross-

sectional dispersion of consumption ĉm,t = 1+�m(ŷm,t�1) and, because ĉ��
m,t is convex, also increases

✓t.

The SDF that prices bonds is given by �qt+1/qt so that the risk-free rate is:

Rf,t = Et


�g

��
t+1

✓t+1

✓t

��1

.

Since gt+1 is IID, in the absence of time-variation in the multiplicative factor ✓t+1/✓t, the risk-

free rate Rf,t would be constant. To understand the time-variation in the risk-free rate, Figure

II illustrates how the conditional moments of ✓t+1/✓t vary with �t for our model with a single �.

In this figure, we see that an increase in �t tends to reduce Et[✓t+1/✓t]. This is because while an

increase in �t increases ✓t, mean-reversion implies that �t+1 is not expected to be as high next

period. Consequently, ✓t+1 is not expected to be as high as ✓t. In short, when �t is relatively high

✓t+1/✓t is expected to be low and the risk-free rate is high.

We report the quantitative properties of ✓t+1/✓t in Table IV. For our benchmark calibration,

we find ✓t+1/✓t is on average 1.001, implying an annual growth rate of about 1.2% (i.e., this is

approximately the amount by which the segmentation e↵ects lower the risk-free rate relative to the

frictionless benchmark) with a standard deviation of about 4.6% monthly, which is why the risk-free

rate in our model is excessively volatile. Since ✓t is persistent but not a random walk, we find that

✓t+1/✓t has a negative autocorrelation coe�cient, �0.13 monthly. This gives rise to our model’s
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upward-sloping average yield curve (as shown in Figure III).

Market-specific factors. Similarly, the state price in market m can be written:

qm,t = ✓m,ty
��
t ,

where

✓m,t := �m[1 + �m(ŷm,t � 1)]�� + (1� �m)✓t,

and where ✓t is the aggregate adjustment given in (15) above. The market-specific SDF is then:

�

qm,t+1

qm,t
= �g

��
t+1

✓m,t+1

✓m,t

Aggregate growth gt+1 enters only through the Lucas-Breeden factor �g��
t+1; volatility �t enters only

through the aggregate adjustments.

We report the quantitative properties of ✓m,t+1/✓m,t in Table IV. For our benchmark calibration,

we find ✓m,t+1/✓m,t is on average 1.4% monthly and is very volatile, with a standard deviation of

about 17% monthly. The only persistence in ✓m,t comes from �t through the aggregate ✓t. Conse-

quently, the market-specific ✓m,t is less persistent than the aggregate ✓t. In turn, this implies that

✓m,t+1/✓m,t is more negatively serially correlated than the aggregate ✓t+1/✓t, a monthly autocorre-

lation coe�cient of �0.46 as opposed to �0.13.

Our model’s implications for risk-premia depend also on the correlation of this multiplicative

factor with the local endowment. The correlation of ✓m,t+1/✓m,t with ŷm,t+1/ŷm,t is indeed quite

negative, �0.76. The fluctuations in the �t impart some serial correlation to the conditional standard

deviation of the market-specific SDF, about 0.58 monthly. This would not be detectable in annual

data (0.5812 = 0.001) but represents considerable time-variation in conditional volatility at higher

frequencies (on the order of 0.581/30 = 0.98 daily, say).
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F Welfare costs calculations

Consider our model with N market types. Let st = (gt,�t) denote the realization of the aggregate

state and let sm,t = (st, ŷm,t) denote the realization of the state in market m. The lifetime utility

of a representative trader in market m 2 {1, . . . , N} is y1��
0 v̂m(sm,0), where v̂m(sm) solves:

v̂m(sm) =
ĉm(sm)1��

1� �

+ Esm

⇥
�g(s0)1��

v̂(s0m)
⇤
,

where ĉm(sm) denotes the ratio of consumption to aggregate endowment in market m and state sm,

s

0
m denotes the state next period, g(s0) denotes aggregate growth in state s

0, and Esm [ · ] denotes

expectations conditional on state sm.

If there is no segmentation, then in every market m the lifetime utility is that of the Lucas

(1987) representative agent, y1��
0 v̂lucas(s), where

v̂lucas(s) =
1

1� �

+ Es
⇥
�g(s0)1��

v̂lucas(s
0)
⇤
.

Of course, v̂lucas(s) depends on s = (g,�) only through aggregate consumption growth g. We

now calculate the benefit of eliminating all segmentation, expressed as the percentage increase ⌦

in lifetime consumption that would make the family indi↵erent between living with the segmented

markets or moving to the full-risk sharing allocation. As is familiar from Alvarez and Jermann

(2004), given homogeneous utility functions, the welfare cost ⌦ solves:

(1 + ⌦)1�� E
"

NX

m=1

!mv̂m(sm)

#
= E [v̂lucas(s)]

so that

⌦ =

0

@ E [v̂lucas(s)]

E
hPN

m=1 !mv̂m(sm)
i

1

A

1
1��

� 1. (16)

To see the e↵ects of segmentation in multiple markets, observe that we could alternatively

calculate a market-specific cost of segmentation ⌦m such that:

(1 + ⌦m)1��E [v̂(sm)] = E [v̂lucas(s)] (17)
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Plugging the expression for E [v̂(sm)] as a function of ⌦m into equation (16), we find that:

1 + ⌦ =

"
NX

m=1

!m (1 + ⌦m)��1

# 1
��1

.

So the aggregate cost ⌦ is a CES aggregate of the market specific costs ⌦m. In our calibration we

have � = 4, so that (1 + ⌦m)��1 is a convex function of ⌦m. By Jensen’s inequality this implies

that:

⌦ >

NX

m=1

!m⌦m.

However, in our numerical examples, the di↵erence between the two turns out to be small.
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Figure I
Conditional moments.
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The market pt/yt ratio (left panel) and conditional standard deviation of the market return
(right panel), both as a function of the volatility state �t and expressed in annual terms.
Three cases are shown, the frictionless case (� = 0), our benchmark (� = 0.31), and
a high segmentation case (� = 0.5). The aggregate endowment growth is fixed at its
unconditional mean. The vertical dashed line is the unconditional mean �̄.
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Figure II
Multiplicative bond-pricing factor ✓t+1/✓t.
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The expected aggregate bond-pricing factor ✓t+1/✓t (left panel) and the standard deviation
of ✓t+1/✓t (right panel) as a function of the volatility state �t, all expressed in annual terms.
Three cases are shown, the frictionless case (� = 0), our benchmark (� = 0.31), and a
high segmentation case (� = 0.5). The vertical dashed line is the unconditional mean �̄.
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Figure III
Average yield curve (annualized).
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Average yield curve for the benchmark model. The star point on the left is the average
yield on a one-month zero coupon bond, 12E [log(Rf )]. Note that, because the risk free
rate is so volatile and because log(·) is concave, this yield turns out to be about 1% lower
than the average risk free rate (Rf = 8.19% annual) reported in the main text.
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Table IV
Properties of the multiplicative SDF adjustment factors.

Moment Market-specific ✓m,t+1

✓m,t
Aggregate ✓t+1

✓t

expected value 1.014 1.001
standard deviation 0.173 0.046

autocorrelation �0.461 �0.126

correlation with
aggregate growth gt+1 0.000 0.000

volatility �t+1 0.125 0.354
idiosyncratic growth ŷ

m
t+1/ŷ

m
t �0.758 �0.056

Std[Et(·)] 0.116 0.015
Auto[Stdt(·)] 0.576 0.778

The SDF that prices asset returns in market m is �g��
t+1✓m,t+1/✓m,t while the SDF pricing bonds

is �g��
t+1✓t+1/✓t. Each is the product of the standard Lucas-Breeden aggregate SDF �g

��
t+1 and a

multiplicative adjustment factor. See Appendix E for details. The table reports the quantitative
properties of these factors for our benchmark calibration. All statistics are monthly.
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