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A General model with detailed derivations

We add three features relative to the model presented in the main text: (i) for each market m there
is a density wy,, > 0 of traders, (ii) the asset supply is S,, > 0, not normalized to 1, and (iii) there

are bonds in positive net supply held in the family portfolio. The total measure of traders is one:

/Olwmdmzl. (1)

The average segmentation parameters is then taken to be A := fol Amwm, dm. Each period one share
of the asset produces a stochastic realization of a non-storable dividend y,,: > 0. The aggregate

endowment available to the entire economy is:

1
yt:/o ym,tsmwm dm. (2)

As in the text, traders in market m are assumed to bear an exogenous fraction \,, € [0, 1] of the
expense of purchasing assets in that market and in return receive A, of the benefit. The remaining
1 — A, of the expenses and the benefits is borne by the family. As show in the text, this results in

a sequential budget constraint of the form:

Cmt + )‘mpm,tsm,t + (1 - A’rn)pft < )\m<pm,t + ym,t)sm,t—l + (1 - )\m) (pfiLt + yt) — Tm,t, (3)

where the new term, 7, ¢, is a lump-sum tax levied on market m by the government. As in the
main text pl~ 1+ Ty and pf . represent the cum-dividend value of the family portfolio brought
into the period and the ex-dividend value of the family portfolio acquired this period, respectively.

Proceeding as in the text, we find that pf . and pl 1.+ satisty:

1
(1-2X) (pf_u + yt) = / (L = X)) (Prt + Ynyt)Snt—1wn dn + by 41 + Z Tk tOk41,6—1
0 k>1

1
(1 - )‘)pfjt = / (1 - )\n)pn,tsn,twn dn + Z ﬂ-k,tbk,tu
0 k>1

where 7,4 and by ; denote the price and quantity of purchases of zero-coupon bonds that pay the

family one (real) dollar for sure in k periods’ time.



Government. The government collects lump-sum taxes from each market and issues zero-coupon

bonds of various maturities subject to the period budget constraint:

1
Bii1+ Zﬂk,tBkH,tq < ZﬂkBk,t +/ Tm tWm dm, (4)
k>1 k>1 0

where Bj; denotes the government’s issue of k-period bonds at time t. We choose a particular

specification of lump-sum taxes that has the property of not redistributing resources across markets:

Tm,t = —r Bit1+ Z Tt [Bry1,t—1 — Brg) | - (5)
k>1
Equilibrium allocations. Market clearing requires s, = Sy, for each m and b, ; = By, for each
k. We plug these conditions in the market-specific budget constraints and then use the government
budget constraint combined with the expressions (5) for lump-sum taxes. After cancelling common
terms we get:

L1\,
et = S + (1 =) [ 12

1o Yn,t Snwp, dn.

First-order conditions and asset pricing. Let p,,; > 0 denote the multiplier on the budget
constraint for market m and use the market-specific budget constraints and accounting identities

for the family portfolio to write the Lagrangian:

o0 1
< =Ey [Z Gt / {u(cm,t) + ,um7thm,t}wm dm]
t=0 0

where

Bt =Am(Dmt + Ymot)Smt—1

1—\ !
+ 1 ;\n / (1 = X)) (Pt + Ynyt)Snt—1wn dn + by g1 + Z T t Okt 1,6—1
- 0 E>1

1—A !
— | Cmt+ Ampm,tsm,t + 1 Xm / (1 - )\n)pn,tsn,twn dn + Z 7"'k,tbk,i& + Tm t
o 0 E>1



Now collecting terms in fol tm,t Bm twm dm and rearranging:

1
/ Mm,thm,twm dm
0

1
= / /’Lm,t{)\m (pm,t + ym,t)sm,t—l —Cmt — )\mpm,tsm,t - 7—7’n,t}0~)m dm
0

1 1— M\
+ / o, ¢ —< b1+ Z Tht (Dkt1,4—1 — bkt) ¢ Wi dm
0 1—A =1

1 1

1—A

+ / Hm,t 1 ;\n / (1 - )\n) |:(pn,t + yn,t)sn,tfl - pn,tsn,t:| WpWm dndm.
0 - 0

Now, in the last term, we permute the roles of the symbols m and n and then interchange the order

of integration:

1 1

11—

/ Hn,t 1 j\n / (1 - )‘m)[(pm,t + ym7t)5m,t—1 - pm,tsm,t]wmwn dm dn
0 - 0

1 1— )\n 1
= / Hn,t —Wn dn / (1 - )‘m)[(pm,t + ym,t)sm,t—l - pm,tSm,t]wm dm.
0 1—=A 0

Next, define the weighted average of Lagrange multipliers:

L1\,

Im,t = Ambmt + (1 — X))@, and g := /
o 1—2X

Hn, tWn dn,

as in the main text. Substituting for ¢, and ¢; we get:

0 1
Z =Ky |:Z /Bt / {U(Cm,t) + Gm.t (pm,t + ym,t)sm,t—l — dm,tPm,tSm,t
t=0 0

— Hmt(Cm,t + Tmyt) + Gt <bl,t—1 + )t (brgre—1 — bk,t)) }wm dm} :
K>1

Apart from the term reflecting the presence of bonds, this is the same Langrangian as in the main
text. We take derivatives (point-wise) to obtain the first order necessary conditions reported in the

main text.

Portfolio weights and returns. To streamline the exposition we return to the model used in

the main text. The total value of the family portfolio is:

/41—Am J
—_ S m.
0 1\ Pm,tSm,t



Thus, in the family portfolio, asset m is represented with a weight:

1-Am

w L= 1—\ pm,tsm,t

mt T el 10 )
0 ToxPnitSndn

Letting Ry t+1 = (Pmjt+1+ Ym,t+1)/Dm,t be the return on asset m, the return on the family portfolio

can be written:

1
Rt+1 :/ Rm,t+11/1m,t dm.
0

Now recall that trader m holds Ay, pp,.t5m ¢ real dollars of asset m, and the rest of his investment:

1\,
1_)\m -V ;3 Mn nda
( )/0 [y Prtsndn

is in the family portfolio. Thus, the return of trader’s m portfolio can be written:
Ut Rnir1 + (1 = Wi ¢) Ryt1,

where:

U o )\mpm,tsm,t—i-l
m,t T1-x, )
A771]7771,153771,15 + (1 - )\m) 0 ﬁpn,tsn,t dn

b

is the portfolio weight in the local asset.



B Computational details

Information. The aggregate state is a VAR for log consumption growth and log idiosyncratic

volatility:
loggit1 = (1—p)logg+plogg: +eg it
logory1 = (1—¢)logao + ¢logor —n(logg: —logg) + evt+1,

where 0 < p, ¢ < 1 and where the two components of innovation, €441 and €, 41, are assumed to

be contemporaneously uncorrelated. The dividend in market m is:

log Ym,t = log Yt + log gm,tv (6)
where the log idiosyncratic component is conditionally IID normal in the cross section:

log Yt ~ IID across m and N(—o02,/2,02,)

Omt = OtOm,

for some time-invariant market specific volatility level G,,.

Setup. Let utility be CRRA with coefficient v > 0 so u/(¢) = ¢~7. Assume markets come in M
different types m € {1,..., M}. Note that this is an abuse of notation given that we previously
used m to index a single market within the [0, 1] continuum. There is an equal measure of assets,
1/M, in each market type. The total measure of traders in a market of type m is denoted by wy,.

Thus, we have the restriction:

M

The supply of asset per trader in a market of type m is Sy, so the total supply in that market is
Smwm. The dividend iS Ymt = Y¢Um,+ where E [y, ¢ | g, 04] = 1. Since the aggregate endowment is

yt, we need to impose the restriction:

M
Z Smwm = 1.
m=1



The segmentation parameter in a market of type m is A, and the supply per trader is S,,. In

equilibrium, consumption in a market of type m is given by:

Cm,t = Yt (Am + Bml)m,t) s

where
M
1—A
Ap = (1= A, — Spwy,
( )nzll_A w
and

We then have g, = 05,1y, | where:

M
o 11—\, o
em,t = )\m (Am + Bmymﬂf) K + (1 - )\m) Z 1— 5\ E [(An + Bnyn,t) K ‘gtv Ut] Wn,

n=1
where, by the LLN, the conditional expectation on the right—hand side calculates the cross-sectional

average of (A, + Bpyn¢)” Y within type n markets. We explain below how to compute this expec-

tation. Now let P+ := pm+/yr be the price/dividend ratio in a type m market. This solves:

0
~ 1— gt+1 4 ~

pm,t:Et ﬁgtJriy Ten . (pm,t+l+ym,t+l) (7)
m

)

B.1 Approximation

Each market is characterized by 3 states: two aggregate states (g, o) and one idiosyncratic state g,
(to simplify notation, we omit the ‘log’). Given the specification above, the transition density is of

the form:

(g, 09 19,0,9) = f(g', 0" |g,0)f(F | o).

Our approximation follows Tauchen and Hussey (1991). First, we pick quadrature nodes and weights
for the aggregate state: consumption growth, @, and W, (column vectors of size Ny) and volatility,
Qo and W, (column vectors of size N,).

In their original paper, Tauchen and Hussey recommended to pick these nodes and weights ac-

cording to the transition density evaluated at the mean, i.e., a bivariate Gaussian density f(¢’, 0’ |g,7)



which in the present case is the product of two independent normal densities with means log g, log 7,

2

5 and o2. Subsequent work has highlighted, however, that when the

respectively, and variances o
Markov chain being approximated is highly persistent, the quality of the approximation may be
poor. In our calibration exercise, this problem may arises when the moment matching algorithm
searches in the region where the volatility process, o, is highly persistent (¢ close to 1). To alleviate

this concern we follow Floden (2008): we generate nodes and weights for ¢ based on a “twisted”

Gaussian density with a higher standard deviation:

a:wav—i—(l—w)L where w = 1/2 + ¢/4. (8)

Vi-@

We also use a larger number of nodes to better capture the impact of high realization of o. Below,
we provide further discussion of the robustness of the approximation.
Next, for every quadrature value of o, we generate quadrature nodes and weights in each market

type m for the log idiosyncratic state log g, according to a Gaussian density with mean —&2,02/2

2

2 02. The resulting nodes and weights column vectors have length N, x Ny and we

and variance &

denote them by QZ"” and ngo. In these vectors of nodes and weights, we adopt the convention

g
that “idiosyncratic endowment comes first:” that is, in the quadrature node vector, idiosyncratic
endowment ¢ under volatility j is found in entry i + Ny(j — 1).

Now, if we combine idiosyncratic endowment, aggregate volatility, and aggregate endowment

growth together we obtain, for each market type m, a finite state space that we index by n €

{1,2,3,... N}, where
N = Ny X Ny x Ng.

We adopt the convention the state of idiosyncratic endowment ¢ € {1,..., N}, volatility j €

{1,..., Ny}, and aggregate consumption growth k£ € {1,..., Ny} correspond to state:
n=1+ Ng(] — 1) + NgNg(k — 1).

In each state, the value of idiosyncratic endowment, aggregate volatility, and aggregate consumption

growth can be conveniently represented with Kronecker products of the quadrature nodes:

% = Qg ® eNcr @ eNy
Vo = €N, ® Qo ® €N,
ng = eNg ® Qytnj‘ o’



where ey denotes a IV x 1 vector of ones. By construction, entry n of vector V, contains consumption
growth if the state of market m is n, and similarly for V, and VyAm. The corresponding quadrature

weights are obtained as follows. We let:

= Wy®en, ®en,
= en, @ W5 ®en,
C" = en,® ;’T o
so that the quadrature weights for the state are:

W =A«B.xC™

where .x denotes MATLAB coordinate-per-coordinate product.

Transition probability matrix. To implement the method of Tauchen and Hussey (1991), we

define a MATLAB function:
frs) =" o) x fo'[o,9) x f(d' | 9),
as well as the quadrature weighting function:
w™(s) = w"(§]0) x wlo) x w(g),

which is the probability density function used above to generate the quadrature nodes and weights

for market m. Letting , the matrix formula for the transition matrix is:

G = f"(enVilen Vo) x flen Vol Vo ey, Vye)-x flen Vi | Vyel)
x(en x W)/ [en. xw(V

V). xw(V0). * w(V;)] ,

which we then normalize so that the rows sum to 1.

Calculating cross-sectional moments. In many instance in the program we need to calculate
E[zm]|g,0],

for some random variable x,,. To do this, we consider:

Ko = (In,xnN, ®€’NQ> [T x WM,



where

wm = €N, &®

m
glo

The coordinate-wise product multiplies each realization of z,, by its probability conditional on
(g9,0), and the pre-multiplication adds up. We then re-Kroneckerize this in order to obtain a N x 1

vector:
K,® EN,-

B.2 Robustness of the approximation

Table II shows that our numerical results are robust to alternative parameterizations of the numeri-
cal approximations. We consider three versions of the single A economy: the benchmark version, the
version with constant o, and the feedback version with countercyclical oy. In our default standard
parameterization we have N = Ny X N, X Nj = 3 x 9 x 19 = 513 quadrature nodes and weights. It
also uses the “twisted” density recommended by Floden (2008) to alleviate concerns about the ac-
curacy of the Tauchen and Hussey (1991) procedure when the o; process is persistent (see equation
(8) above). In our high precision parameterization we have N = Ny x Ny x Nj = 5x19x 25 = 2,375
nodes and weights and again use the twisting recommended by Floden. In the no twist parameteri-
zation we use the plain Tauchen and Hussey (1991) procedure and the same configuration of nodes
as in the standard parameterization. The issue of twisting does not arise in the constant ¢ model.

For each of these numerical approximations the table reports the calibrated parameter values,
the values of the moments we target, and the implications for aggregate asset prices.

For a given model, we see that increasing the number of nodes from the standard to high
parameterization has negligible effect on the results. Similarly, the twisting recommended by Floden
has negligible effect. This suggests that our calibrated stochastic process is not persistent enough

to cause any problems for the plain Tauchen and Hussey procedure.

10



C Incomplete markets counterpart

In this Appendix we consider an incomplete markets counterpart of our model. In contrast with
the segmented markets model, we assume that traders are only restricted in their local trades,
i.e., traders in market m € [0, 1] have to hold at least A\ shares of their local assets. As shown in
detail below, we solve for an equilibrium in two steps. First, we consider an alternate model where
traders faces tighter constraints and are restricted to a smaller set of securities. Namely, we start by
assuming that trader m € [0, 1] is forced to hold exactly A shares of asset m, and can only trade a
claim to aggregate consumption, that is, a well diversified portfolio of assets n # m. This becomes a
simple Bewley model whose equilibrium can be characterized using results from Krueger and Lustig
(2010). Second, we show that the prices and allocations in this alternate model are the basis of an

equilibrium in the original incomplete markets model. Specifically:

e the ex-dividend price of any local asset is the same as the price of a claim to aggregate

consumption,

e trader m € [0, 1] always finds it optimal to hold a well diversified portfolio of assets n # m,

and

e the portfolio constraint of trader m € [0, 1] is binding. That is, if we allow a trader to hold

more than A shares, her optimal holding remains equal to A.

The intuition for these results is the following. Given that all traders n # m can trade asset
m without portfolio constraints, their marginal rate of substitution (MRS) must price asset m.
Moreover, the MRS of traders n # m only depends on the history of dividends in market n # m,
not on the history of dividends in market m. Therefore, from the point of view of traders n # m,
the dividend risk in market m is idiosyncratic. It follows that the price of asset m must be the same
as the price of a claim to aggregate consumption. Given that all assets have the same ex-dividend
price, trader m wants to hold a well diversified equally-weighted portfolio of assets n # m and wants

to hold as little of asset m as possible, i.e., exactly A shares.

C.1 Alternate model

We assume that the aggregate endowment, y;, follows a geometric random walk:

Yt = gtYt—1

11



where yg is given and where g, is IID with finite support §. We also assume that there is a continuum
m € [0, 1] of assets with dividends @y, ¢y, where 3, ; is IID across time and assets, has finite support
Y, and is independent from the endowment growth process. The mean of g, is normalized to one.
There is a continuum of traders, also indexed by m € [0, 1].

We consider a version of the incomplete markets model of Krueger and Lustig (2010): we assume
that a trader of type m € [0, 1] is forced to hold A shares of asset m but can self-insure by trading
claims to the aggregate endowment.!

The initial distribution of aggregate consumption claim holdings is ®y(c), with [od®y(c) =
1 — A. Now consider an individual trader who starts with initial holding og. At time t > 1 after
history st, = (9%,,9") == (Jm1s---sJmt 91, - -, gt), the trader chooses consumption c¢;(ay, s,,) and

asset holdings o (00, st,), subject to the sequential budget constraint:

ct(oo, an) + o4(00, an)pt(gt) < Ayt + 01—1(00, 33;;1)[% + pt(gt)]v 9)

where p;(g') is the price of a consumption claim after aggregate history g*. On the right-hand side
of the budget constraint, Ay, +y; represents the dividend paid out by the A shares of asset m that
the trader is forced to hold. We also assume that the trader faces short-selling limits of the sort

considered in Krueger and Lustig:

o1(00, sb,)pe(g') > —Kyys. (10)

Intertemporal utility is

S5 g (st 00 T (1)

t=1 st 1-7

where m;(st,) denotes the probability of history sf,. An equilibrium consists of asset prices {p:(g*)}

and policy functions {c;(0o,st,)} and {o¢(00, st,)} such that the policy functions maximize each

Krueger and Lustig (2010) also consider richer market structures, with Arrow securities paying off conditional on
the realized aggregate state, and one-period riskless bonds. However, they show that there are equilibria in which
there is no trade in these other markets. That is, in order to self-insure against idiosyncratic shocks, agents find it
optimal to trade only aggregate endowment claims.

12



trader’s problem given prices, and markets clear at for all ¢t and g¢':

/Z (Y )t(90, G 9') AP (00) = yt,

U
/Zﬂt(@fn)at(amz)ﬁz,gt)dfb(ao) =1-M\
in
A rescaled economy. To solve for an equilibrium, Krueger and Lustig (2010) start with the

following change of variables:

c(0op, st N R t
fn) = M7 o't(o'()’sfn) = Ut(UO,an), and pt(gt) — pt(g )

Yt Yt

ét(O'(), S

With this new notation, a trader’s intertemporal utility can be written:

1—y = 5t ¢\ G0, sh,)' Y
Yo Zﬁ Zﬂ-t(sm)ﬁa
t=1 st

t 1—v
A _ N N 7(9s)9s
where  §i= 83 m(g)g!™,  and  o(sh,) = mu(gh) [[
> = T

Similarly, the sequential budget constraints and the short-selling constraints now become:

é(00, 85,) + 64(00, 85)Pe(g") < Mt + 61-1(00, 4 D1+ pe(gh))]

a'15((7()7 an)ﬁt(gt) Z _Kt7

with market clearing conditions:

| S mtat)auton s )de(on) = 1

Y,

/Zwt(gfn)6t(0'0, st Yd®(og) =1 — A

An equilibrium of the rescaled economy is defined exactly as before.

As is clear from these equations, after the change of variables, the history of aggregate endow-
ment growth g* no longer affects the fundamentals of the rescaled economy. Indeed, y; does not
affect the right—hand side of the rescaled market clearing conditions, and the only way it affects the
agent’s budget constraints is through its potential impact on the rescaled asset price, p(gt). It is
therefore natural to look for an equilibrium in which the rescaled asset price is, in fact, a determin-

istic function of time, i.e. pi(g') = p¢, and in which rescaled consumption and asset holdings are

13



only functions of time and of the history of idiosyncratic shocks, ¢, i.e., é(0,st,) = ¢(00, 9%,),
and o4(0g, st,) = o1(00, 9%,). In this case, the asset becomes a risk-free bond and an equilibrium can
be computed using standard methods for Bewley models (Ljungqvist and Sargent, 2004, Chapter
17, for example).

After solving for an equilibrium of the rescaled economy, an equilibrium of the incomplete

markets model is found by scaling back the price, consumption, and asset holdings:

pt(gt) = ytﬁh Ct(007 ana gt) = ytét(007 gin)v and Ut<007 Z);m gt) = a'15(0-07 :g:n)
C.2 Back to the original incomplete markets model

With this result in mind, we provide an equilibrium in the original incomplete markets model, i.e.,
where each trader m € [0, 1] can trade claims in all assets but is restricted to hold at least A shares
of their local asset. The trader faces the short-selling restriction that the total value of her portfolio
has to be greater than —K;y; + Apy,. ¢+, where p,, ¢ is the price of the local asset. We guess and verify

that there exists an equilibrium in which:
e all local assets have the same price pp,+ = pi(g') = Dy,
e the trader’s consumption is the same as in the alternative incomplete market model,

e trader m holds ) shares of asset m and 6¢(¢,) shares of a claim to the aggregate endowment.

The trader synthesizes this claim by holding an equally weighted portfolio of assets n # m.

The asset market clears by construction. Also by construction, the sequential budget constraints
and the short-selling restrictions hold. So, all we need to verify is that the consumption and asset

holdings are individually optimal.

Optimality of holdings of asset n # m. Given concavity, the first-order conditions are neces-

sary and sufficient. The first-order condition for the holdings of asset n # m is:

nt+1

A -
A N N 1¢t+1\00, N o
Peye = B Z 7T(9t+1>77(ym,t+1)7r(yn,t+1) <yt+ f+ ( Atym )> [yt+1yn,t+1 + Dr1Yet1] + Um.ts
yeee(o0, ty)

Smt4+1,9n,t+1

with vp,; > 0, and v, = 0 if the short-selling restriction is slack. Note that, in this first-order
condition, we used the fact that, in our candidate equilibrium, re-scaled consumption does not

depend on the history of aggregate shocks. Dividing both sides by ¥; > 0, and keeping in mind that

14



Yt+1/Yt = Gi+1, we can rewrite this condition as:

~ A . A A Ct+1(00=y1t:[1)> - N A Um,t
Pt =3 (g 1773/,1??2/71( Un,t+1 + Dey1] + —
> (Ge+1) 7 (G, t+1) 7 (Jne41) 2100, TL) [Gnt+ +1] m

Im,t+1,Pm,t+1,0n,t+1

5 . . ea1(o0, 9T\ N . . Um,t
=B #gi+1) D w(Gmenr) | i > m@ner)dnirr + Do | +

¢
— o ét(oo, 9t,) e Yt
Ct+1(00,yﬁ1) - . Um,t
=4 (m,t+1 < 14+ pry1] + — 12
y;l " Ct(007 ym) [ ] Yt ( )

where we use that ¢, 41 and g 41 are independent, that ) 7(gi+1) = 1, and finally that

gt+1
ZQWH 7(Un,t+1)Ynt+1 = 1. This condition is the same as the one for the aggregate consumption
claim in the alternative incomplete markets model. It thus holds by construction. The key intuition
is that, for agent m, the endowment risk of asset n # m is idiosyncratic. Therefore, this agent

values a claim to asset n % m exactly the same way as a claim to aggregate endowment.

Optimality of holding of asset m. For agent m € [0, 1], the first-order condition for the holding

of asset m is:

t+1

A N Yt+1Ct+1\Y N -
DiYt = Z Br(ge+1)T (Ym,t+1) (W) [Yt4+10m,t+1 + Dep1Ye41) + Vit
tCt(Urn

Gt+1,0m,t+1

where v, ; is defined as above. We need to verify an inequality because of the restriction that agent
m has to hold at least X\ shares of asset m, and because of our guess that the agent holds exactly A

shares. Proceeding as above we can rewrite this condition as:

-
Ct+1100, Y N A Vm,
Z B ( (Gmt41 <t+(m)> [Jm i1 + Pev1] + ULy
Ct(Uanm) Ut

ym,t+1
Substituting (12) on the left-hand side of this inequality, this condition becomes:

t+1

~ Ct4+1\00,
Z 7 (Gmts1) (H(ym

) -
U, -1/ <0
¢t(o0,9%,) ) [y o ]

Y, t+1

-
< COVtKétH (UO,yﬁfl)> 73)m,t+1] <0.

That is, the agent finds it optimal to hold exactly A shares of the asset if the asset payoff is negatively
correlated with their marginal utility of consumption. This happens if, conditional on history ¢’ ,

consumption next period is an increasing function of the local endowment realization, ¢, 1. But
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this follows from a known property of Bewley models: consumption is an increasing function of

“cash-at-hand”. In terms of our notation, this property can be expressed as follows:

Proposition. Suppose that, for all oy and 4., ¢t(00,9L,) > 0. Then é(o0,9%,) is an increasing
function of Y.
Proof. Let

1+ Pra
bi

Rt =

and consider the income fluctuation problem associated with the incomplete markets model. That

is, for each t > 1, consider:

Lt 1—y
Ct+ (3/ )
@=s> Y Fa A

~
~t
7=0 giti-gt,

subject to
R by (ym' )
it () + = < @y ()
J
a1 ) = A erjer + by (97)
s
b (Gm”) 5 e
Rypy  —
Ctj () > 0
atr = a

Given that the idiosyncratic dividends are IID over time, the optimization problem and therefore
the value function only depend on time, not on the history ¢, of idiosyncratic shocks up to time
t. Because the objective is concave and the constraint set convex, it follows that the value function
v¢(a) is concave. Moreover, following the proof of Theorem 4.2 in Stokey and Lucas (1989) we find

that the value function solves the Bellman equation:

=

+ B (i) v ()\y;n + Rila— > ;

m

vi(a) = sup
t() c>0 1_'7

16



subject to a — ¢ > K;. In particular, this implies that consumption ¢;(a) := ¢(00, 9%,) > 0 solves the

Bellman equation at time ¢ given cash-at-hand:
a = Njms + -1 (00,9 ") [1+ ] -

We now show that the value function is differentiable at a with vj(a) = ¢(a)™7. The proof is
standard. Given that ¢(a) > 0, for a close enough to a, the consumption ¢ = ¢(a) +a — a is
feasible given cash-at-hand a (it is positive and satisfies the borrowing constraint by construction).

Plugging this back into the Bellman equation we obtain:

(ce(a) +a—a)t=

ve(a) > + B w1 | Ml + Rila— cila)]
1—v o +< )
(@) +a—a)t™ ci(a)l=
== 1— ~ + 'Ut(a/) — ﬁ

Rearranging gives:

(ce(a) +a—a)t= B ct(a)lfv.

1—x 1—x

ve(a) — ve(a) >

Now consider @ > a, divide both sides by @ —a > 0, and let @ — a'. Given that the function
v(a) is concave, it has left- and right-hand side derivatives everywhere. Therefore, as @ — a™, the
left-hand side of the above equation converges to the right derivative of the value function at a, so

that we obtain:
vi(a®) > ey(a) 7.

Now do the same for @ < a and obtain:
vi(a”) < erfa)™

Concavity also implies that v;(a™) > v;(a™). Taken together, we find that v:(a) is differentiable at

a and that vj(a) = ¢;(a)~7. Using the notation of the sequence problem, this can be written:

Ty
ct(a()vyfn) = ['Ui (/\fgm,t + 01 (007@51) [1+ pi] >] .

By concavity, the directional derivative of vy(a) is a decreasing functions of cash-at-hand. Together
with the above, this implies that consumption is an increasing function of the current dividend

realization, ¥, . O
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C.3 Different asset pricing implications

Another important difference between incomplete and segmented markets concerns the relationship
between idiosyncratic income risk and the equity premium. As emphasized by Mankiw (1986),
Constantinides and Duffie (1996) and Krueger and Lustig (2010), with CRRA utility and idiosyn-
cratic income risk that is independent of aggregate consumption growth, idiosyncratic risk has no
impact on the equity premium in the incomplete markets model.? Indeed, as explained above, in
the incomplete markets version of our model, the MRS of every trader m prices the excess returns

in market n # m. In particular, it prices the excess return of the market portfolio:
E[M,,R°] =0. (13)

Moreover, the MRS can be factored into M, M , where M = Bg~7 is the Lucas-Breeden stochastic
discount factor, and M, is an idiosyncratic component that is independent from M. Expanding

the expectation in (13) we have:
E[M,, M R¢] = E[M,,|E[M R¢] + Cov[M,,, MR®] = 0.

From independence Cov[M,,, M R¢] = 0. Using this and dividing by E[M,,] > 0 we obtain:
E[MR] = 0.

As shown by Kocherlakota (1996), this asset pricing equation cannot rationalize the observed equity
premium.

This irrelevance result does not hold in the segmented markets model. The reason is that in
our asset pricing model the local stochastic discount factor does not have to price the excess return
on the aggregate market portfolio, as in equation (13), but instead only has to price the excess
return on the local asset market. The local discount factor is correlated with the local excess return
(through the local endowment realization) and this makes it impossible to strip out the influence
of the market-specific factor.

Specifically, instead of equation (13) we have a pricing equation of the form:

E [M,,R¢,] = 0, (14)

2See Telmer (1993) and Heaton and Lucas (1996) for important early applications of incomplete markets models
to asset pricing.
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where M,, is the local stochastic discount factor and Ry, is the local excess return. We can again
write the local discount factor M, = MmM where M is the Lucas-Breeden discount factor and

M, is a market-specific factor. Now proceeding as above and expanding the expectation in (14) we

have:
E[M,, M R,] = E[M,,JE[MRE,] + Cov[M,,, MR, = 0.

But M, and RS, depend on the same local risk factor so Cov[M,,, MRE,] # 0 and we cannot strip

out E[M,,]. This makes it impossible to aggregate the collection of equations (14) into (13), and,

because of this, the standard incomplete markets logic does not apply in our model.
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D Conditional moments and return predictability

Conditional price/dividend ratio. Our model’s implications for time variation in asset returns
are largely summarized by the implications for the market price/dividend ratio. The left panel of
Figure I shows the annualized market price/dividend ratio as a function of the volatility state oy
holding the aggregate endowment growth constant at its mean and using our benchmark param-
eterization unless otherwise noted. In the frictionless version of the model, A = 0, the p;/y; ratio
is constant. For A > 0, the p;/y; ratio is monotonically declining. A high oy corresponds to high
average marginal utility ¢; and a low p;/y; and, in that sense, corresponds to a “bad” aggregate
state. A low oy corresponds to a low average marginal utility ¢, a high p;/y;, and represents a
“good” aggregate state. For higher values of A, the price/dividend ratio is relatively lower in bad

states and higher in good states. In short, more segmentation tends to amplify fluctuations in p;/y;.

Conditional volatility of stock returns. The right panel of Figure I shows the annualized
conditional standard deviation of the market return. For A > 0 this is monotonically increasing
in the volatility state o;. An increase in o; represents an increase in the cross-sectional variation
in idiosyncratic endowments, yet this translates to an increase in the time series variation of the
aggregate market return. At high frequencies, the model produces ARCH-like effects in aggregate
returns, the monthly autocorrelation coefficient for the conditional standard deviation of returns
is 0.77. This would be undetectable in annual data (0.77'2 = 0.04) but represents considerable
time-variation in conditional return volatility at higher frequencies (on the order of 0.771/30 = 0.99
daily, say). Again we see that more segmentation tends to amplify fluctuations, here the sensitivity

of the conditional standard deviation to o; is higher the higher is A.

Return predictability. The time-variation in the price/dividend ratio shown in Figure I implies
that aggregate market returns in our model are forecastable (given that aggregate endowment
growth is IID). To see this, we use our model to reproduce return predictability regressions of the
kind documented by Campbell and Shiller (1988) and Fama and French (1988). We run regressions
of annual returns and excess returns on the dividend/price ratio y;/p; and a constant. In the data,
at a one-year horizon this produces a coefficient on y;/p; of about 3 (for returns) or 3.4 (for excess
returns). Thus, relatively low prices forecast high subsequent returns. In our model, we find the
coefficient is about 15 for returns (Table III). Thus our model can reproduce the predictability of
returns. However, because in our model the risk-free rate is nearly as countercyclical as returns,

the model excess returns are nearly a-cyclical (in fact, the coefficient is slightly negative).
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Another way to see the time-variation in returns is to observe that in the model the standard
deviation of expected returns is 6.7%, just over two-thirds the level of the average return. In the
data, the standard deviation of the fitted values of returns and excess returns are similarly volatile.

Since aggregate growth g;1 is IID, the time-variation in asset returns in our model is introduced
through the multiplicative adjustment 6,1 /6; in the SDF that prices bonds and through the market-
specific adjustments 6, 111/6m ¢ in the SDFs that price stocks. We now document the properties

of these terms in more detail.
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E Multiplicative adjustment to SDF's

Aggregate bond-pricing factor. With CRRA preferences the aggregate state price ¢; can be
written as the product of the marginal utility of aggregate consumption y, ’ and a multiplicative

term 6; that captures the segmentation effect:

gt = etyt_’y?

where

Y1— X _
915 = = [1 + )\m(ym,t — 1)] T dm. (15)
0 L—

In other words, 6, is the cross-sectional average marginal utility but reweighted to reflect the different
contributions of traders in different markets to the family portfolio. Observe that 8; depends on
the cross-sectional distribution of endowments, as determined by the volatility factor oy, but does
not depend on any individual endowment realization. A high realization of o; increases the cross-
sectional dispersion of consumption é,, + = 14 Ay, (U, —1) and, because é;ﬂt is convex, also increases
0.

The SDF that prices bonds is given by B¢i+1/q: so that the risk-free rate is:

O]
Reu = o |

Since g¢41 is IID, in the absence of time-variation in the multiplicative factor 6;11/6;, the risk-
free rate Ry; would be constant. To understand the time-variation in the risk-free rate, Figure
IT illustrates how the conditional moments of 6;1/60; vary with o, for our model with a single A.
In this figure, we see that an increase in o, tends to reduce E;[0;+1/6;]. This is because while an
increase in o, increases 6;, mean-reversion implies that o;4+1 is not expected to be as high next
period. Consequently, 6,11 is not expected to be as high as ;. In short, when o, is relatively high
01+1/0; is expected to be low and the risk-free rate is high.

We report the quantitative properties of 6;11/6; in Table IV. For our benchmark calibration,
we find 0;11/60; is on average 1.001, implying an annual growth rate of about 1.2% (i.e., this is
approximately the amount by which the segmentation effects lower the risk-free rate relative to the
frictionless benchmark) with a standard deviation of about 4.6% monthly, which is why the risk-free
rate in our model is excessively volatile. Since 6; is persistent but not a random walk, we find that

0:+1/6; has a negative autocorrelation coefficient, —0.13 monthly. This gives rise to our model’s
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upward-sloping average yield curve (as shown in Figure III).
Market-specific factors. Similarly, the state price in market m can be written:

_ -
Qm,t — em,tyt )

where
6’m,t = )\m[l + )\m(?)m,t - 1)]_7 + (1 - )\m)gta

and where 6, is the aggregate adjustment given in (15) above. The market-specific SDF is then:

Gm,t+1 —y Ot
B “ :/ng;yl =
Qm,t emt

)

Aggregate growth g411 enters only through the Lucas-Breeden factor Bg;?l; volatility oy enters only
through the aggregate adjustments.

We report the quantitative properties of 6, 141/60m+ in Table IV. For our benchmark calibration,
we find 0y, ¢41/0m, is on average 1.4% monthly and is very volatile, with a standard deviation of
about 17% monthly. The only persistence in 6,,; comes from o; through the aggregate 6;. Conse-
quently, the market-specific 8, ; is less persistent than the aggregate 6;. In turn, this implies that
Om,t+1/0m ¢ is more negatively serially correlated than the aggregate 6;41/6;, a monthly autocorre-
lation coefficient of —0.46 as opposed to —0.13.

Our model’s implications for risk-premia depend also on the correlation of this multiplicative
factor with the local endowment. The correlation of 6, 141/0m+ With Um t+1/9m+ is indeed quite
negative, —0.76. The fluctuations in the o; impart some serial correlation to the conditional standard
deviation of the market-specific SDF, about 0.58 monthly. This would not be detectable in annual
data (0.58'2 = 0.001) but represents considerable time-variation in conditional volatility at higher

frequencies (on the order of 0.58'/30 = (.98 daily, say).
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F Welfare costs calculations

Consider our model with N market types. Let s; = (g¢,0¢) denote the realization of the aggregate
state and let sp, ¢+ = (S¢,Ym,t) denote the realization of the state in market m. The lifetime utility

of a representative trader in market m € {1,..., N} is yéfwﬁm(sm,o), where 0y, (sp,) solves:

(Sm)l_7

brn(sm) = 5 4 B, [B(5) ()],

where ¢é,(s,,) denotes the ratio of consumption to aggregate endowment in market m and state s,
s denotes the state next period, g(s’) denotes aggregate growth in state s, and E  [-] denotes
expectations conditional on state s,.

If there is no segmentation, then in every market m the lifetime utility is that of the Lucas
(1987) representative agent, yéfﬂ’@lums(s), where

. 1 e
'Ulucas(s) = ﬁ + Es [/89(3,)1 ’leucas(sl)] :

Of course, Upycqs(s) depends on s = (g,0) only through aggregate consumption growth g. We
now calculate the benefit of eliminating all segmentation, expressed as the percentage increase €2
in lifetime consumption that would make the family indifferent between living with the segmented
markets or moving to the full-risk sharing allocation. As is familiar from Alvarez and Jermann

(2004), given homogeneous utility functions, the welfare cost €2 solves:

N
(1 + Q)li’y E Z wm@m(sm) =K [@lucas(s)]
m=1
so that
0= E [@lucas(s)] o —1. (16)

E [Zgzl Wi O, (8m)

To see the effects of segmentation in multiple markets, observe that we could alternatively

calculate a market-specific cost of segmentation €2, such that:

(1+ ) TE[0(5m)] = E [Blucas(s)] (17)
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Plugging the expression for E [0(s,,)] as a function of €, into equation (16), we find that:
1
N 1
1+Q= Zwm(1+Qm)7‘1] :
m=1

So the aggregate cost ) is a CES aggregate of the market specific costs §2,,,. In our calibration we

have v = 4, so that (1 + Q,,)?""! is a conver function of Q,,. By Jensen’s inequality this implies

that:

However, in our numerical examples, the difference between the two turns out to be small.
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Figure 1
Conditional moments.
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The market p;/y; ratio (left panel) and conditional standard deviation of the market return
(right panel), both as a function of the volatility state o, and expressed in annual terms.
Three cases are shown, the frictionless case (A = 0), our benchmark (A = 0.31), and
a high segmentation case (A = 0.5). The aggregate endowment growth is fixed at its
unconditional mean. The vertical dashed line is the unconditional mean &.
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Figure 11
Multiplicative bond-pricing factor ;1 /6;.

Expected 0;41/60: (annualized) Std dev 0;41/6: (annualized)
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The expected aggregate bond-pricing factor 6;41/0; (left panel) and the standard deviation
of 0;41/6; (right panel) as a function of the volatility state oy, all expressed in annual terms.
Three cases are shown, the frictionless case (A = 0), our benchmark (A = 0.31), and a
high segmentation case (A = 0.5). The vertical dashed line is the unconditional mean &.
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Figure 111
Average yield curve (annualized).
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Average yield curve for the benchmark model. The star point on the left is the average
yield on a one-month zero coupon bond, 12E [log(Ry)]. Note that, because the risk free
rate is so volatile and because log(-) is concave, this yield turns out to be about 1% lower
than the average risk free rate (R; = 8.19% annual) reported in the main text.
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Table IV
Properties of the multiplicative SDF adjustment factors.

Moment | Market-specific %thl Aggregate 6%—1’1

expected value 1.014 1.001
standard deviation 0.173 0.046
autocorrelation —0.461 —0.126

correlation with

aggregate growth gy 0.000 0.000
volatility o441 0.125 0.354

idiosyncratic growth g7, /9" —0.758 —0.056
Std[Eq(+)] 0.116 0.015

Auto[Stds ()] 0.576 0.778

The SDF that prices asset returns in market m is /Bg;Ylem7t+1 /0m ¢ while the SDF pricing bonds

is Bgt__gl@tﬂ /0. Each is the product of the standard Lucas-Breeden aggregate SDF 59;:1 and a
multiplicative adjustment factor. See Appendix E for details. The table reports the quantitative
properties of these factors for our benchmark calibration. All statistics are monthly.
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